A Simple Solution for Diophantine Equations of Second, Third and Fourth Power
نویسندگان
چکیده
منابع مشابه
THIRD-ORDER AND FOURTH-ORDER ITERATIVE METHODS FREE FROM SECOND DERIVATIVE FOR FINDING MULTIPLE ROOTS OF NONLINEAR EQUATIONS
In this paper, we present two new families of third-order and fourth-order methods for finding multiple roots of nonlinear equations. Each of them requires one evaluation of the function and two of its first derivative per iteration. Several numerical examples are given to illustrate the performance of the presented methods.
متن کاملexistence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولthird-order and fourth-order iterative methods free from second derivative for finding multiple roots of nonlinear equations
in this paper, we present two new families of third-order and fourth-order methods for finding multiple roots of nonlinear equations. each of them requires one evaluation of the function and two of its first derivative per iteration. several numerical examples are given to illustrate the performance of the presented methods.
متن کاملA Simple Solution to Friedman's Fourth Problem
It is shown that Friedman's problem, whether there exists a proper extension of first order logic satisfying the compactness and interpolation theorems, has extremely simple positive solutions if one considers extensions by generalized (finitary) propositional connectives. This does not solve, however, the problem of whether such extensions exist which are also closed under relativization of fo...
متن کاملDiophantine equations for second order recursive sequences of polynomials
Let B be a nonzero integer. Let define the sequence of polynomials Gn(x) by G0(x) = 0, G1(x) = 1, Gn+1(x) = xGn(x) +BGn−1(x), n ∈ N. We prove that the diophantine equation Gm(x) = Gn(y) for m,n ≥ 3, m 6= n has only finitely many solutions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mapana - Journal of Sciences
سال: 2005
ISSN: 0975-3303,0975-3303
DOI: 10.12723/mjs.6.17